Broadband forcing of turbulence

Bernard J. Geurts, Arek K. Kuczaj

Multiscale Modeling and Simulation (Twente)
Anisotropic Turbulence (Eindhoven)

IMS Turbulence Workshop
Underwater canopies

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Urban dispersion

DAPPLE: Dispersion of Air Pollution and its Penetration into the Local Environment
Urban canopy

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Rural dispersion - water management

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Compact heat- and mass-transfer

Nickel foam - heat-pump applications

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Compact heat- and mass-transfer

Coating with Carbon Nano Fibers - catalyst applications
Fractal modeling of complex objects?
Controlling scales in flames

Effect of an upstream rod in flame

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Swirl control of lean combustion

Adding swirl stabilizes flame but hinders mixing

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Enhanced syngas combustion

Intensified combustion following upstream flow instability

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Will

- present broadband forcing methodology
- obtain controlled non-Kolmogorov turbulence
- consider effects on mixing rate
- investigate responsiveness to time-dependent forcing
- present problem of relating forcing to actual (fractal) object
Will

- present broadband forcing methodology
- obtain controlled non-Kolmogorov turbulence
- consider effects on mixing rate
- investigate responsiveness to time-dependent forcing
- present problem of relating forcing to actual (fractal) object
Will

- present broadband forcing methodology
- obtain controlled non-Kolmogorov turbulence
- consider effects on mixing rate
- investigate responsiveness to time-dependent forcing
- present problem of relating forcing to actual (fractal) object
Will

- present broadband forcing methodology
- obtain controlled non-Kolmogorov turbulence
- consider effects on mixing rate
- investigate responsiveness to time-dependent forcing
- present problem of relating forcing to actual (fractal) object
Will

- present broadband forcing methodology
- obtain controlled non-Kolmogorov turbulence
- consider effects on mixing rate
- investigate responsiveness to time-dependent forcing
- present problem of relating forcing to actual (fractal) object
Outline

1. Forcing at various scales
2. Mixing in manipulated turbulence
3. Optimal forcing?
4. Connections to real objects
5. Concluding remarks
Outline

1. Forcing at various scales
2. Mixing in manipulated turbulence
3. Optimal forcing?
4. Connections to real objects
5. Concluding remarks
Forcing incompressible flow

Physical space: $\nabla \cdot \mathbf{v} = 0$

$$\frac{\partial \mathbf{v}}{\partial t} + \left(\mathbf{v} \cdot \nabla \right) \mathbf{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{v} + \mathbf{f}$$

Spectral space: put $\mathbf{F} = \mathcal{F}(\mathbf{f})$ and assume $\mathbf{k} \cdot \mathbf{F} = 0$. Then

$$\mathbf{v}(\mathbf{x}, t) = \sum_{\mathbf{k}} \mathbf{u}(\mathbf{k}, t) e^{i \mathbf{k} \cdot \mathbf{x}}$$

with

$$\left(\frac{\partial}{\partial t} + \nu k^2 \right) \mathbf{u}(\mathbf{k}, t) = \mathbf{D} \mathbf{W}(\mathbf{k}, t) + \mathbf{F}(\mathbf{k}, t)$$

where

$$D_{\alpha\beta} = \delta_{\alpha\beta} - \frac{k_\alpha k_\beta}{k^2} \quad ; \quad \mathbf{W}(\mathbf{k}, t) = \mathcal{F} \left(\mathbf{v}(\mathbf{x}, t) \times \omega(\mathbf{x}, t) \right)$$

Pseudo-spectral treatment, FFTW, de-aliased, ...

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Forcing incompressible flow

Physical space: \(\nabla \cdot \mathbf{v} = 0 \)

\[
\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{v} + \mathbf{f}
\]

Spectral space: put \(\mathbf{F} = \mathcal{F}(f) \) and assume \(\mathbf{k} \cdot \mathbf{F} = 0 \). Then

\[
\mathbf{v}(\mathbf{x}, t) = \sum_{\mathbf{k}} \mathbf{u}(\mathbf{k}, t) e^{i\mathbf{k} \cdot \mathbf{x}}
\]

with

\[
\left(\frac{\partial}{\partial t} + \nu k^2 \right) \mathbf{u}(\mathbf{k}, t) = \mathbf{D} \mathbf{W}(\mathbf{k}, t) + \mathbf{F}(\mathbf{k}, t)
\]

where

\[
D_{\alpha\beta} = \delta_{\alpha\beta} - \frac{k_\alpha k_\beta}{k^2} \quad ; \quad W(\mathbf{k}, t) = \mathcal{F}\left(\mathbf{v}(\mathbf{x}, t) \times \omega(\mathbf{x}, t) \right)
\]

Pseudo-spectral treatment, FFTW, de-aliased, ...

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Forcing incompressible flow

Physical space: $\nabla \cdot \mathbf{v} = 0$

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{v} + \mathbf{f}$$

Spectral space: put $\mathbf{F} = \mathcal{F}(\mathbf{f})$ and assume $\mathbf{k} \cdot \mathbf{F} = 0$. Then

$$\mathbf{v}(\mathbf{x}, t) = \sum_{\mathbf{k}} \mathbf{u}(\mathbf{k}, t)e^{i\mathbf{k} \cdot \mathbf{x}}$$

with

$$\left(\frac{\partial}{\partial t} + \nu k^2 \right) \mathbf{u}(\mathbf{k}, t) = D \mathbf{W}(\mathbf{k}, t) + \mathbf{F}(\mathbf{k}, t)$$

where

$$D_{\alpha\beta} = \delta_{\alpha\beta} - \frac{k_\alpha k_\beta}{k^2} \quad ; \quad \mathbf{W}(\mathbf{k}, t) = \mathcal{F}\left(\mathbf{v}(\mathbf{x}, t) \times \omega(\mathbf{x}, t)\right)$$

Pseudo-spectral treatment, FFTW, de-aliased, ...
Convergence for decaying turbulence

R_λ and skewness **S** at initial **R_λ = 50** (a) and **R_λ = 100** (b)

<table>
<thead>
<tr>
<th>R_λ/N³</th>
<th>32³</th>
<th>48³</th>
<th>64³</th>
<th>96³</th>
<th>128³</th>
<th>192³</th>
<th>256³</th>
<th>384³</th>
<th>512³</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.56</td>
<td>0.83</td>
<td>1.11</td>
<td>1.67</td>
<td>2.22</td>
<td>3.34</td>
<td>4.45</td>
<td>6.67</td>
<td>8.90</td>
</tr>
<tr>
<td>100</td>
<td>0.20</td>
<td>0.29</td>
<td>0.39</td>
<td>0.59</td>
<td>0.79</td>
<td>1.18</td>
<td>1.57</td>
<td>2.36</td>
<td>3.15</td>
</tr>
</tbody>
</table>

k_{max}η at different **N**
Convergence for decaying turbulence

R_λ and skewness S at initial $R_\lambda = 50$ (a) and $R_\lambda = 100$ (b)

\[
\begin{array}{cccccccccccc}
R_\lambda / N^3 & 32^3 & 48^3 & 64^3 & 96^3 & 128^3 & 192^3 & 256^3 & 384^3 & 512^3 \\
50 & 0.56 & 0.83 & 1.11 & 1.67 & 2.22 & 3.34 & 4.45 & 6.67 & 8.90 \\
100 & 0.20 & 0.29 & 0.39 & 0.59 & 0.79 & 1.18 & 1.57 & 2.36 & 3.15 \\
\end{array}
\]

$k_{\text{max}}\eta$ at different N
Forcing: spectral and physical localization

(a) Two-band forcing in spectral space
(b) Forcing in a slab in physical space - spectral convolution
Energy and forcing

> Evolution of Fourier coefficients

\[\left(\frac{\partial}{\partial t} + \nu k^2 \right) u_\alpha(k, t) = \psi_\alpha(k, t) + F_\alpha(k, t) \]

where \(\psi_\alpha(k, t) = D_{\alpha\beta} W_\beta(k, t) \)

> Energy evolution: \(E(k, t) = \frac{1}{2} |u(k, t)|^2 \)

\[\frac{\partial E(k, t)}{\partial t} = -\varepsilon(k, t) + T(k, t) + T_F(k, t) \]

- dissipation \(\varepsilon(k, t) = 2\nu k^2 E(k, t) \)
- transfer \(T(k, t) = u^*_\alpha(k, t) \psi_\alpha(k, t) \)
- forcing \(T_F(k, t) = u^*_\alpha(k, t) F_\alpha(k, t) \)

Various forcing strategies possible - consider constant energy in (some) modes (‘A’) and constant energy input-rate (‘B’)

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Energy and forcing

> Evolution of Fourier coefficients

\[
\left(\frac{\partial}{\partial t} + \nu k^2 \right) u_\alpha(k, t) = \psi_\alpha(k, t) + F_\alpha(k, t)
\]

where \(\psi_\alpha(k, t) = D_{\alpha\beta} W_\beta(k, t) \)

> Energy evolution: \(E(k, t) = \frac{1}{2} |u(k, t)|^2 \)

\[
\frac{\partial E(k, t)}{\partial t} = -\varepsilon(k, t) + T(k, t) + T_F(k, t)
\]

- dissipation \(\varepsilon(k, t) = 2\nu k^2 E(k, t) \)
- transfer \(T(k, t) = u^*_\alpha(k, t) \psi_\alpha(k, t) \)
- forcing \(T_F(k, t) = u^*_\alpha(k, t) F_\alpha(k, t) \)

Various forcing strategies possible - consider constant energy in (some) modes (‘A’) and constant energy input-rate (‘B’)
Energy and forcing

> Evolution of Fourier coefficients

\[
\left(\frac{\partial}{\partial t} + \nu k^2 \right) u_\alpha(k, t) = \psi_\alpha(k, t) + F_\alpha(k, t)
\]

where \(\psi_\alpha(k, t) = D_{\alpha\beta} W_\beta(k, t) \)

> Energy evolution: \(E(k, t) = \frac{1}{2} |u(k, t)|^2 \)

\[
\frac{\partial E(k, t)}{\partial t} = -\varepsilon(k, t) + T(k, t) + T_F(k, t)
\]

- dissipation \(\varepsilon(k, t) = 2\nu k^2 E(k, t) \)
- transfer \(T(k, t) = u^*_\alpha(k, t) \psi_\alpha(k, t) \)
- forcing \(T_F(k, t) = u^*_\alpha(k, t) F_\alpha(k, t) \)

Various forcing strategies possible - consider constant energy in (some) modes (‘A’) and constant energy input-rate (‘B’)
Basic forcing of type ‘A’

Choose to have $\partial_t u_\alpha = 0$, i.e., $\partial_t E(k, t) = 0$ for forced modes

Obtain forcing:

$$A1 : \quad F_\alpha(k, t) = \nu k^2 u_\alpha(k, t) - \psi_\alpha(k, t)$$

Extensions keeping $|u(k, t)|$ constant (Chasnov)

$$F_\alpha(k, t) = (\varepsilon(k, t) - T(k, t)) \frac{u_\alpha(k, t)}{2E(k, t)}$$

or shell-averaged version (Kerr)

Or average over all modes: (and assign to P forced modes)

$$A2 : \quad F_\alpha(k, t) = \frac{\tilde{\varepsilon}(t)}{P} \frac{u_\alpha(k, t)}{2E(k, t)}$$

yielding constant energy for entire system
Basic forcing of type ‘A’

Choose to have \(\partial_t u_\alpha = 0 \), i.e., \(\partial_t E(k, t) = 0 \) for forced modes

Obtain forcing:

\[A1 : \quad F_\alpha(k, t) = \nu k^2 u_\alpha(k, t) - \psi_\alpha(k, t) \]

Extensions keeping \(|u(k, t)| \) constant (Chasnov)

\[F_\alpha(k, t) = (\varepsilon(k, t) - T(k, t)) \frac{u_\alpha(k, t)}{2E(k, t)} \]

or shell-averaged version (Kerr)

Or average over all modes: (and assign to \(P \) forced modes)

\[A2 : \quad F_\alpha(k, t) = \frac{\hat{\varepsilon}(t)}{P} \frac{u_\alpha(k, t)}{2E(k, t)} \]

yielding constant energy for entire system
Basic forcing of type ‘A’

Choose to have $\partial_t u_\alpha = 0$, i.e., $\partial_t E(k, t) = 0$ for forced modes

Obtain forcing:

$$A1 : \quad F_\alpha(k, t) = \nu k^2 u_\alpha(k, t) - \psi_\alpha(k, t)$$

Extensions keeping $|u(k, t)|$ constant (Chasnov)

$$F_\alpha(k, t) = (\varepsilon(k, t) - T(k, t)) \frac{u_\alpha(k, t)}{2E(k, t)}$$

or shell-averaged version (Kerr)

Or average over all modes: (and assign to P forced modes)

$$A2 : \quad F_\alpha(k, t) = \frac{\hat{\varepsilon}(t)}{P} \frac{u_\alpha(k, t)}{2E(k, t)}$$

yielding constant energy for entire system
Basic forcing of type ‘A’

Choose to have $\partial_t u_\alpha = 0$, i.e., $\partial_t E(k, t) = 0$ for forced modes

Obtain forcing:

$$ A1 : \quad F_\alpha(k, t) = \nu k^2 u_\alpha(k, t) - \psi_\alpha(k, t) $$

Extensions keeping $|u(k, t)|$ constant (Chasnov)

$$ F_\alpha(k, t) = (\varepsilon(k, t) - T(k, t)) \frac{u_\alpha(k, t)}{2E(k, t)} $$

or shell-averaged version (Kerr)

Or average over all modes: (and assign to P forced modes)

$$ A2 : \quad F_\alpha(k, t) = \frac{\tilde{\varepsilon}(t)}{P} \frac{u_\alpha(k, t)}{2E(k, t)} $$

yielding constant energy for entire system
Constant energy input rate: ‘B’

Energy input rate ε_w fixed per forced mode:

\[B1 : \quad F_\alpha(k, t) = \frac{\varepsilon_w u_\alpha(k, t)}{P \frac{2E(k, t)}{k^\beta}} \]

Multiscale stirrer: (Mazzi, Vassilicos)

\[B2 : \quad F_\alpha(k, t) = \frac{\varepsilon_w k^\beta}{\sum_{k \in \mathbb{K}} \sqrt{2E(k, t)k^\beta}} e_\alpha(k, t) \]

where \mathbb{K} is set of forced modes and

\[e(k, t) = \frac{u(k, t)}{|u(k, t)|} + \frac{k \times u(k, t)}{|k||u(k, t)|} \]

- complexity of stirrer ‘contained’ in exponent $\beta(=3/5)$, related to fractal dimension $D_f = \beta + 2$
Constant energy input rate: ‘B’

Energy input rate ε_w fixed per forced mode:

\[B1 : \quad F_\alpha(k, t) = \frac{\varepsilon_w u_\alpha(k, t)}{P \sqrt{2E(k, t)}} \]

Multiscale stirrer: (Mazzi, Vassilicos)

\[B2 : \quad F_\alpha(k, t) = \frac{\varepsilon_w k^\beta}{\sum_{k \in \mathbb{K}} \sqrt{2E(k, t)} k^\beta} e_\alpha(k, t) \]

where \mathbb{K} is set of forced modes and

\[e(k, t) = \frac{u(k, t)}{|u(k, t)|} + i \frac{k \times u(k, t)}{|k||u(k, t)|} \]

- complexity of stirrer ‘contained’ in exponent $\beta (= 3/5)$, related to fractal dimension $D_f = \beta + 2$
Constant energy input rate: ‘B’

Energy input rate ε_w fixed per forced mode:

$$B1 : \quad F_\alpha(k, t) = \frac{\varepsilon_w u_\alpha(k, t)}{P 2E(k, t)}$$

Multiscale stirrer: (Mazzi, Vassilicos)

$$B2 : \quad F_\alpha(k, t) = \frac{\varepsilon_w k^\beta}{\sum_{k \in K} \sqrt{2E(k, t)}k^\beta} e_\alpha(k, t)$$

where K is set of forced modes and

$$e(k, t) = \frac{u(k, t)}{|u(k, t)|} + i \frac{k \times u(k, t)}{|k||u(k, t)|}$$

- complexity of stirrer ‘contained’ in exponent $\beta(= 3/5)$, related to fractal dimension $D_f = \beta + 2$
Two-band forcing

Kinetic energy \hat{E} (a) and energy-dissipation-rate $\hat{\varepsilon}$ (b)

A1 (dashed), A2 (dotted), B1 (dash-dotted), B2 (solid)
Two-band forcing: compensated spectra

Two-band forced turbulence: $k \leq 3\pi$ and $33\pi < k \leq 41\pi$

(a) A1 (dashed), A2 (dotted), B1 (dash-dotted), B2 (solid)

(b) Co-spectra E_{11}, E_{22}, E_{33} for A1 (dashed) and B2 (solid)
Peak where you want: B2

Equal forcing per band: $\varepsilon_{w,1} = \varepsilon_{w,2} = 0.15$
(a) Large-scale forcing $\varepsilon_{w,1} = 0.15$ in $k \leq 3\pi$: second band
$33\pi < k \leq 41\pi$: $\varepsilon_{w,2} = 0.075, 0.15, 0.30, \ldots, 0.90$

(b) Corresponding time-averaged total kinetic energy

Forcing removes energy from large scales - nonlocality
Outline

1. Forcing at various scales
2. Mixing in manipulated turbulence
3. Optimal forcing?
4. Connections to real objects
5. Concluding remarks
Fractal stirring at various scales
Controlled mixing in two-band forcing

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Scalar mixing: area and wrinkling

Geometric properties level-set: where $c(x, t) = a$

$$I_g(a, t) = \int_{S(a, t)} dA \ g(x, t)$$

- $g(x, t) = 1$: area A
- $g(x, t) = |\nabla \cdot n(x, t)|$: wrinkling W

Instantaneous and cumulative:

$$\vartheta_A(a, t) = A(a, t)/A(a, 0) ; \
\vartheta_W(a, t) = W(a, t)/W(a, 0)$$

$$\zeta_A(a, t) = \int_0^t \vartheta_A(a, \tau) d\tau ; \
\zeta_W(a, t) = \int_0^t \vartheta_W(a, \tau) d\tau$$

Distinguish: rate and maxima (ϑ) and total effect over time (ζ)
Scalar mixing: area and wrinkling

Geometric properties level-set: where $c(x, t) = a$

$$l_g(a, t) = \int_{S(a,t)} dA \ g(x, t)$$

- $g(x, t) = 1$: area A
- $g(x, t) = |\nabla \cdot n(x, t)|$: wrinkling W

Instantaneous and cumulative:

$$\vartheta_A(a, t) = A(a, t)/A(a, 0) \ ; \ \vartheta_W(a, t) = W(a, t)/W(a, 0)$$

$$\zeta_A(a, t) = \int_0^t \vartheta_A(a, \tau) d\tau \ ; \ \zeta_W(a, t) = \int_0^t \vartheta_W(a, \tau) d\tau$$

Distinguish: rate and maxima (ϑ) and total effect over time (ζ)
Evolution of wrinkling ϑ_W and ζ_W

Comparing: forcing
- $K_{1,1}$ at $\varepsilon_w = 0.60$ (solid)
- $K_{1,1}$ at $\varepsilon_w = 0.15$ and $K_{5,8}$ at $\varepsilon_w,2 = 0.45$ (dashed)
- $K_{1,1}$ at $\varepsilon_w = 0.15$ and $K_{13,16}$ at $\varepsilon_w,2 = 0.45$ (dash-dotted)
Mixing: value for money

- Forcing $K_{1,1} - K_{13,16}$ at $(0.60 - 0.00)$ (○),
 $(0.45 - 0.15)$ (solid), $(0.30 - 0.30)$ (dash),
 $(0.15 - 0.45)$ (dot-dash), $(0.05 - 0.55)$ (dot)
- surface-area (a) and wrinkling ζ^{*}_W at $t = 2$ (b)

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Outline

1. Forcing at various scales
2. Mixing in manipulated turbulence
3. Optimal forcing?
4. Connections to real objects
5. Concluding remarks
Preferred frequency for turbulence agitation?

So far: forcing at various spatial scales

What about time-modulation of forcing?

Consider forcing at:

1. large-scales only
2. various scales simultaneously
Modulated Forcing

Time-modulation of forcing (B1):

\[F_\alpha(k, t) = \left[\frac{\varepsilon_w}{P} \frac{u_\alpha(k, t)}{2E(k, t)} \right] \left(1 + A \sin(\omega t) \right) \]

Expect:

- \(\omega \gg 1 \): modulation too rapid: no/small effect
- \(\omega \ll 1 \): modulation quasi-stationary: no/small effect

Q1: optimal modulation frequency/frequencies?
Q2: increased turbulence/transport/mixing?
Ensemble of forced simulations

Registration total kinetic energy:

- start: j-th initial condition, N_r realizations
- forced - no modulation: $E_j^{(0)}(t)$
- forced - modulation: $E_j(t, \omega)$
Extract Amplitude and Phase

Averaging over N_r realizations:

$$\langle E(t, \omega) \rangle = \frac{1}{N_r} \sum_{i=1}^{N_r} E_j(t, \omega) = a(\omega) + A(\omega) \sin \left(\hat{\omega} (t + \Phi(\omega)) \right)$$
Response maxima: energy

- $R_\lambda = 50$: ○, and $R_\lambda = 100$: △
- Phase-shift: $\omega \gg 1$ then \rightarrow 90-degrees
- Compensated spectrum: ω^{-1} decay
Response maxima: dissipation

- Phase-shift: $\omega \gg 1$ then $\rightarrow 180$-degrees
Effect of amplitude of modulation

Modulation depth: $A = 1/5$ (○), $A = 1/2$ (□), $A = 1$ (△)
Response maxima and correlations?

Kinetic energy

Energy-dissipation rate

\[C_{E(0), E(t)}(\omega) = \frac{\langle E(0)E(t) \rangle}{\langle E(0)^2 \rangle^{1/2} \langle E(t)^2 \rangle^{1/2}} \]

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Response maxima and correlations?

Maximal correlation at ω at which response maximum
Here: $t^* = 0.3$
Experimental ‘similarities’: washing machine

Cadot-Titon-Bonn (JFM 485, 2003)

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Experimental ‘similarities’: washing machine

Velocity fluctuations (left) and power-input (right)
Possible Connections with Experiments?

Periodic active grid mode: Tipton - van de Water

Grid can be cycled at different frequencies
Dissipation rate in modulated turbulence

Grid solidity and dissipation rate:

Low-pass filtering of the dissipation-rate

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Frequency dependence

Resonant dissipation - phase shift of 180 degrees
Mean field and GOY?

Heydt-Grossman-Lohse

- Dashed: mean-field, Dots: GOY simulation
- GOY and REWA simulations show only small effect
dissimilar to numerical NS experiments

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Two point closure

Bos-Rubinstein

Energy (a) and dissipation (b): two-point closure approach compares closely to DNS

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Multiscale forcing

Response maxima pronounced when large scales forced
More pronounced as Re lower

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Complex forcing strategies

Response to saw-tooth forcing
Outline

1. Forcing at various scales
2. Mixing in manipulated turbulence
3. Optimal forcing?
4. Connections to real objects
5. Concluding remarks

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Fractal modeling of complex objects?
IBM - basics

Peskin, c.s.
- Compute on simple grid - cut out object
- Fast solvers - complex geometries

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Peskin, c.s.
- Compute on simple grid - cut out object
- fast solvers - complex geometries

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
IBM in life-sciences

Famous application: flow in realistic heart

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
IBM - volume penalization

\[\partial_t u + (u \cdot \nabla)u + \nabla p - \frac{1}{Re} \Delta u + \frac{1}{\epsilon} H u = 0 \]

Indicator function:

\[H = \begin{cases}
1 & \text{if } x \in \Omega_s \\
0 & \text{if } x \in \Omega_f
\end{cases} \]
How to relate forcing to IBM?

Case studies:

- **bottom-up**: optimize forcing to comply with simulated flow?
- **top-down**: relate ‘objects’ to ‘local fractal dimension’?
- ...

 - can lack of detailed resolution be ‘modeled away’ at all?
 - how much geometric detail is needed?
 - can two-point closure provide guidance?
 - ...

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
How to relate forcing to IBM?

Case studies:

- **bottom-up**: optimize forcing to comply with simulated flow?
- **top-down**: relate ‘objects’ to ‘local fractal dimension’?
- ...
- can lack of detailed resolution be ‘modeled away’ at all?
- how much geometric detail is needed?
- can two-point closure provide guidance?
- ...

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
1 Forcing at various scales
2 Mixing in manipulated turbulence
3 Optimal forcing?
4 Connections to real objects
5 Concluding remarks
Summary

- considered effect of broadband forcing on turbulent flow
- quantitative and qualitative changes of cascading possible
- controlling mixing rate and mixing ‘completeness’
- ‘receptivity’ to agitation probed with time-modulated forcing
- response maxima, correlations
- connect complex geometry to specific forcing?

Thanks: NCF
Summary

- considered effect of broadband forcing on turbulent flow
- quantitative and qualitative changes of cascading possible
- controlling mixing rate and mixing ‘completeness’
- ‘receptivity’ to agitation probed with time-modulated forcing
- response maxima, correlations
- connect complex geometry to specific forcing?

Thanks: NCF
considered effect of broadband forcing on turbulent flow
quantitative and qualitative changes of cascading possible
controlling mixing rate and mixing ‘completeness’
‘receptivity’ to agitation probed with time-modulated forcing
response maxima, correlations
connect complex geometry to specific forcing?

Thanks: NCF
Summary

- considered effect of broadband forcing on turbulent flow
- quantitative and qualitative changes of cascading possible
- controlling mixing rate and mixing ‘completeness’
- ‘receptivity’ to agitation probed with time-modulated forcing
- response maxima, correlations
- connect complex geometry to specific forcing?

Thanks: NCF

Bernard J. Geurts, Arek K. Kuczaj: Broadband forcing of turbulence
Summary

- considered effect of broadband forcing on turbulent flow
- quantitative and qualitative changes of cascading possible
- controlling mixing rate and mixing ‘completeness’
- ‘receptivity’ to agitation probed with time-modulated forcing
- response maxima, correlations
- connect complex geometry to specific forcing?

Thanks: NCF
Summary

- considered effect of broadband forcing on turbulent flow
- quantitative and qualitative changes of cascading possible
- controlling mixing rate and mixing ‘completeness’
- ‘receptivity’ to agitation probed with time-modulated forcing
- response maxima, correlations
- connect complex geometry to specific forcing?

Thanks: NCF