Development and application of a suite of polysaccharide-degrading enzymes for analysing plant cell walls

Stefan Bauer

Imperial College, London
29.02.2008
overview

• structure of plant cell wall polysaccharides
 cellulose, hemicellulose, pectins

• polysaccharide analysis

• development of enzyme collection

• examples of enzymes
 enzymes acting on xyloglucan and xylan

• application of the collection
 identification of cell wall defects in A. thaliana irx8 and irx9
cell wall polysaccharides

- cellulose
- hemicellulose
- pectins
- AGPs
cellulose: $\beta(1\rightarrow4)$-linked glucan chains
hemicelluloses: $\beta(1\rightarrow4)$-linked backbone (1)

xylans

mannans

hemicelluloses: $\beta(1\rightarrow4)$-linked backbone (2)

xyloglucans

mixed-linked glucans $\beta(1\rightarrow3)/\beta(1\rightarrow4)$

pectins: $\alpha(1\rightarrow4)$-linked galacturonic acid

homogalacturonan

rhamnogalacturonan I (RG I)

arabinan

arabinogalactan

pectins: $\alpha(1\rightarrow4)$-linked galacturonic acid

rhamnogalacturonan II (RG II)

arabinogalactan proteins (AGPs)
model of the plant cell wall

model of the plant cell wall

model of the plant cell wall

composition of *Arabidopsis thaliana* cell walls

Characterization of the Cell-Wall Polysaccharides of *Arabidopsis thaliana* Leaves¹

Earl Zablackis, Jing Huang, Bernd Müller², Alan G. Darvill, and Peter Albersheim*

Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602–4712

Localisation and characterisation of cell wall mannan polysaccharides in *Arabidopsis thaliana*

Michael G. Handford · Timothy C. Baldwin
Florence Goubet · Tracy A. Prime · Joanne Miles
Xiaolan Yu · Paul Dupree

DOI 10.1007/s00425-003-1073-9

Original Article

Received: 5 February 2003 / Accepted: 22 May 2003 / Published online: 3 July 2003
© Springer-Verlag 2003

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>homo-galacturonan</td>
<td>23%</td>
</tr>
<tr>
<td>rhamno-galacturonan I</td>
<td>11%</td>
</tr>
<tr>
<td>rhamno-galacturonan II</td>
<td>8%</td>
</tr>
<tr>
<td>xyloglucan</td>
<td>20%</td>
</tr>
<tr>
<td>celluloset</td>
<td>14%</td>
</tr>
<tr>
<td>protein</td>
<td>4%</td>
</tr>
<tr>
<td>pectins</td>
<td>42%</td>
</tr>
<tr>
<td>glucuronoarabinoxylan</td>
<td>6%</td>
</tr>
<tr>
<td>glucuronoarabinoxylan</td>
<td>4%</td>
</tr>
<tr>
<td>glucuronoarabinoxylan</td>
<td>14%</td>
</tr>
<tr>
<td>cellulose</td>
<td>14%</td>
</tr>
</tbody>
</table>
cell wall composition is tissue specific

Richmond & Somerville Plant Mol. Biol. 47 (2001) 131-143
overview

• structure of plant cell wall polysaccharides
 cellulose, hemicellulose, pectins

• polysaccharide analysis

• development of enzyme collection

• examples of enzymes
 enzymes acting on xyloglucan and xylan

• application of the collection
 identification of cell wall defects in A. thaliana irx8 and irx9
cell wall analysis

sequential extraction of polysaccharides from the alcohol insoluble residue (AIR)

crude extracts are fractionated by size-exclusion chromatography

fractions are further investigated by partial degradation

resulting oligomers are separated by HPAEC-PAD or CE and structure elucidation is performed by standard methylation analysis, MALDI-TOF and NMR
cell wall analysis

monosaccharide composition - (‘sugar analysis’)
GC, HPAEC-PAD

IR-spectroscopy

IR-spectroscopy

tissue staining
specific dyes, antibodies...

partial degradation
MALDI-TOF, CE
<table>
<thead>
<tr>
<th>Acidic Hydrolysis</th>
<th>Enzymatic Hydrolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial degradation</td>
<td>Much more specific and under less drastic conditions</td>
</tr>
<tr>
<td>Not completely specific</td>
<td>Many commercially available enzymes are products from fungal culture filtrates and are rather complex mixtures</td>
</tr>
<tr>
<td>Requires optimised conditions in every particular case due to different acidic stabilities of glycosidic linkages</td>
<td>The only feasible way to obtain reproducible access to enzymes with properties required is to clone the genes of interest into a suitable host</td>
</tr>
</tbody>
</table>
overview

- structure of plant cell wall polysaccharides
 cellulose, hemicellulose, pectins

- polysaccharide analysis

- development of enzyme collection

- examples of enzymes
 enzymes acting on xyloglucan and xylan

- application of the collection
 identification of cell wall defects in *A. thaliana irx8* and *irx9*
cloning of enzymes

Aspergillus nidulans

Pichia pastoris

pPICZα C
3.6 kb
cloning of enzymes

5' AOX1 α-factor coding sequence myc 6x his zeocin 3'

NH₂ α-factor amino acid sequence myc 6x his COOH

translation

secretion

NH₂ amino acid sequence myc 6x his COOH
Amplification of genes from cDNA of *A. nidulans* grown on various polysaccharides containing media

Cloning into *Pichia pastoris*

Clones are tested for expression levels in the supernatants using anti-C-myc antibody

Optimisation of expression using different media

large scale expression
enzyme purification – affinity chromatography
- 74 *Pichia pastoris* clones

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucans</td>
<td>18 (4)</td>
</tr>
<tr>
<td>Xyloglucan</td>
<td>4</td>
</tr>
<tr>
<td>Xylan</td>
<td>10</td>
</tr>
<tr>
<td>Mannan</td>
<td>9 (3)</td>
</tr>
<tr>
<td>Pectins</td>
<td>23 (2)</td>
</tr>
<tr>
<td>Others</td>
<td>10 (5)</td>
</tr>
<tr>
<td>Result</td>
<td>74 (14)</td>
</tr>
</tbody>
</table>
Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls

Stefan Bauer*, Prasanna Vasu†, Staffan Persson*, Andrew J. Mort†, and Chris R. Somerville**

*Carnegie Institution, Stanford, CA 94305; and †Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078
Contributed by Chris R. Somerville, June 4, 2006
problems: finding the right substrate

p-nitrophenyl-glycosides (‘PNP-labeled sugar’)

“free sugar”

p-nitrophenol

405 nm

AN8149.2 (α-fucosidase): not active on PNP-α-fucopyranoside but on cotton xyloglucan subunits

AN1804.2 (β-glucosidase): active on PNP-β-glucopyranoside but not on cellobiose

(but active on other aryl-β-glucosides …)
problems: finding the right substrate

AN2206.2 (α-rhamnosidase): not active on PNP-α-rhamnopyranoside, not active on naringin/hesperidin

but active on rhamnogalacturonan I, releasing terminal L-rhamnose
overview

• structure of plant cell wall polysaccharides
 cellulose, hemicellulose, pectins

• polysaccharide analysis

• development of enzyme collection

• examples of enzymes
 enzymes acting on xyloglucan and xylan

• application of the collection
 identification of cell wall defects in A. thaliana irx8 and irx9
Tamarind xyloglucan consists of 4 repeating tetrameric subunits.

CE electropherogram (LIF detection) after APTS derivatisation.
tamarind xyloglucan digest (xyloglucanase)

xyloglucanase (Novozyme)

xyloglucanase (AN0452.2)

1 d

3 d

5 d
tamarind xyloglucan subunit digest
(β-galactosidase, Megazyme)
cotton xyloglucan contains additional subunits
(a substrate for α-fucosidase AN8149.2)
cXG subunits after α-fucosidase incubation (AN8149.2)
oligoxyloglucan reducing end-specific
xyloglucanobiohydrolase (OREX) – AN1542.2
OREX can be used in MALDI-TOF analysis (1)
OREX can be used in MALDI-TOF analysis (2)
Ferulic acid esterase (AN5267.2) → α-arabinofuranosidases (AN1571.2 & AN7908.2) → α-acetylxylosidases (AN3294.2 & AN6093.2) → α-glucuronidase (AN9286.2) → β-xylosidases (AN2359.2 & AN8401.2) → β-acetylxylosidases (AN3613.2 & AN1818.2) → α-arabinofuranosidases (AN1571.2 & AN7908.2) → α-glucuronidase (AN9286.2) → β-xylosidases (AN2359.2 & AN8401.2) → β-acetylxylosidases (AN3613.2 & AN1818.2) → α-arabinofuranosidases (AN1571.2 & AN7908.2) → α-glucuronidase (AN9286.2) → β-xylosidases (AN2359.2 & AN8401.2) → β-acetylxylosidases (AN3613.2 & AN1818.2) → α-arabinofuranosidases (AN1571.2 & AN7908.2) → α-glucuronidase (AN9286.2) → β-xylosidases (AN2359.2 & AN8401.2) → β-acetylxylosidases (AN3613.2 & AN1818.2) → α-arabinofuranosidases (AN1571.2 & AN7908.2) → α-glucuronidase (AN9286.2) → β-xylosidases (AN2359.2 & AN8401.2) → β-acetylxylosidases (AN3613.2 & AN1818.2) → α-arabinofuranosidases (AN1571.2 & AN7908.2)

Enzymes towards xylans
enzymes towards xylans

XylA

XylC

β-xylosidase

α-glucuronidase
overview

• structure of plant cell wall polysaccharides
 cellulose, hemicellulose, pectins

• polysaccharide analysis

• development of enzyme collection

• examples of enzymes
 enzymes acting on xyloglucan and xylan

• application of the collection
 identification of cell wall defects in *A. thaliana irx8* and *irx9*
characterisation of *irregular xylem* mutants

characterisation of *irx9* cell walls
characterisation of *irx8* cell walls

endo-galactanase

- *irx8-1*, buffer
- *irx8-1*, endo-galactanase
- pectic galactan, endo-galactanase
- *irx8-1* + pectic galactan, endo-galactanase

ball-milled cell walls

- *irx8-1*, buffer
- *irx8-1*, endo-xylanase
- *irx8-1*, endo-xylanase
- Birchwood xylan, endo-xylanase

XylC

- AN1818.2
- Col-0, buffer
- Col-0, endo-xylanase
- Birchwood xylan, endo-xylanase

1 M KOH fraction

- *irx8-1*, buffer 1 M KOH
- *irx8-1*, endo-xylanase 1 M KOH
-birchwood xylan, endo-xylanase

XylA

- AN3613.2
- Col-0, buffer 1 M KOH
- Col-0, endo-xylanase 1 M KOH
- Birchwood xylan, endo-xylanase
characterisation of \textit{irx8} cell walls

\textbf{WT}

\textbf{Xyl C}

\textbf{Xyl A}

\textbf{irx8}
74 enzymes cloned and expressed in *P. pastoris*

clones are deposited in the Fungal Genetics Stock Center (FGSC, University of Kansas) and are freely available to the research community

these pure enzymes are a powerful toolkit for the analysis of plant cell wall polysaccharides complementing techniques such as monosaccharide analysis, IR, immunolabelling etc.
acknowledgement

Prasanna Vasu
Andrew Mort
Oklahoma State University Stillwater, OK

Chris Somerville
Carnegie Institution
Stanford, CA

Staffan Persson & all members of the Somerville lab(s) ...
acknowledgement

... and all people from the Carnegie Institution