Nonlinear Monte Carlo Methods: From American Options to Fully Nonlinear PDEs

Nizar TOUZI

Imperial College London
and Ecole Polytechnique Paris

July 4, 2007
Outline

1. Monte Carlo Methods for American Options
2. Backward SDEs and semilinear PDEs
3. Second order BSDEs
4. Numerical Examples
Outline

1. Monte Carlo Methods for American Options

2. Backward SDEs and semilinear PDEs

3. Second order BSDEs

4. Numerical Examples
Pricing American Options in Complete Markets

In the context of a complete market with a nonrisky asset S^0:

$$S^0_t = e^{rt}, \quad t \geq 0,$$

and a risky security S defined by the Black-Scholes model

$$dS_t = S_t (rdt + \sigma dW_t) \quad \text{where} \quad W \text{ is a Brownian motion,}$$

the no-arbitrage price of the American put option with strike $K > 0$ and maturity $T > 0$:

$$P_0 = \sup_{\tau \in \mathcal{T}_T} \mathbb{E} \left[e^{-r\tau} (K - S^\tau)^+ \right] = \mathbb{E} \left[e^{-r\tau^*} (K - S^{\tau^*})^+ \right]$$

where $\mathcal{T}_T = \{ \text{stopping times with values in } [0, T] \}$ and

$$\tau^* = \min \{ t \geq 0 : P_t = (K - S_t)^+ \}$$
Discrete-time Approximation

• Let \(t^n_i = i h_n, \ i = 1, \ldots, n \) where \(n \) is integer (to be sent to \(\infty \)) and \(h_n = \frac{iT}{n} \)

• Define the so-called Snell envelope:

\[
Y^n_T = (K - S_T)^+ \quad \text{and} \quad Y^n_{t^n_i} = \max \left\{ (K - S_{t^n_i})^+, E^{t^n_i}_{t^n_i} \left[e^{-r h_n Y^n_{t^n_{i+1}}} \right] \right\}
\]

• Then, an approximation of the American put price is:

\[
Y^n_0 \rightarrow P_0
\]

and the error is known to be of order \(n^{-1/2} \), i.e.

\[
\limsup_{n \to \infty} \sqrt{n} \left(Y^n_0 - P_0 \right) < \infty
\]
Approximation of Conditional Expectations

Main observation: in the present context all conditional expectations are regressions, i.e.

\[
\mathbb{E}_{t_i^n} \left[Y^n_{t_{i+1}^n} \right] = \mathbb{E} \left[Y^n_{t_{i+1}^n} \mid S_{t_i^n} \right]
\]

\[\implies\] Classical methods from statistics:
- Kernel regression (<Carrière>)
- Projection on subspaces of \(L^2(\mathbb{P}) \) (<Longstaff-Schwarz, Gobet-Lemor-Warin AAP05>)

from numerical probabilistic methods
- quantization... (<Bally-Pagès SPA03>)

Integration by parts (<Bouchard-Ekeland-Touzi FS04>)
Approximation of the Replicating Strategy

- Put price is $P_t = P(t, S_t)$ a deterministic function of (t, S_t)
- The replicating strategy of the American put is:
 $$\Delta_t = \frac{\partial P}{\partial S}(t, S_t), \quad t < \tau^*$$
- An approximation of the replication strategy within a Monte Carlo estimation of the put price is:
 $$\Delta_{t_i}^n = \mathbb{E}_{t_i}^n \left[Y_{t_{i+1}}^n \Delta W_{t_{i+1}}^n \right]$$
 where $\Delta W_{t_{i+1}}^n = W_{t_{i+1}}^n - W_{t_i}^n$.

- Finally, the Monte Carlo scheme is:
 $$Y_T^n = (K - S_T)^+$$ and
 $$\hat{Y}_{t_i}^n = \max\left\{ (K - S_{t_i}^n)^+, e^{-r_{n,T}} \mathbb{E}_{t_i}^n \left[Y_{t_{i+1}}^n \right] \right\}$$
 $$\hat{\Delta}_{t_i}^n = \mathbb{E}_{t_i}^n \left[Y_{t_{i+1}}^n \Delta W_{t_{i+1}}^n \right]$$
Objective: Monte Carlo technique for the approximation of the American option price and hedge extends to solutions of Fully nonlinear PDEs.

- Fully Nonlinear PDEs are encountered in many areas of applied mathematics. In particular,
 - stochastic control problems can be characterized in terms of the Bellman (dynamic programming) equation
 \[
 0 = -\frac{\partial v}{\partial t} - \sup_{u \in U} \left\{ b(x, u) \cdot Dv + \frac{1}{2} \text{Tr} \left[\sigma \sigma^T(x, u) D^2v \right] + f(x, u)v - k(x, u) \right\}
 \]
 - stopping problems can also be characterized in terms of the corresponding Bellman equation (free boundary)
Outline

1. Monte Carlo Methods for American Options
2. Backward SDEs and semilinear PDEs
3. Second order BSDEs
4. Numerical Examples
The Stochastic Integral Representation Theorem

- \(\xi : \mathcal{F}_T^W \) -measurable random variable, \(\mathbb{E}|\xi|^2 < \infty \), and

\[
Y_t := \mathbb{E} [\xi | \mathcal{F}_t], \quad t \in [0, T]
\]

Theorem There exists an \(\mathbb{F}^W \) -adapted process \(Z \) with
\[
\mathbb{E} \int_0^T |Z_t|^2 dt < \infty
\]
such that

\[
Y_t = \mathbb{E} \xi + \int_0^t Z_s \cdot dW_s, \quad t \in [0, T]
\]

Theorem (Clark-Ocone) If \(\xi \) is Malliavin-differentiable, then
\[
Z_t = \mathbb{E}[D_t \xi | \mathcal{F}_t], \ i.e.
\]

\[
Y_t = \mathbb{E} \xi + \int_0^t \mathbb{E}[D_s \xi | \mathcal{F}_s] \cdot dW_s, \quad t \in [0, T]
\]

“Taylor formula with integral rest”
Stochastic representation in the Markov case

- Let $\xi = g(X_T)$, where the process X is defined by

$$X_0 \quad \text{given and} \quad dX_t = b(X_t)dt + \sigma(X_t)dW_t$$

with elliptic $\sigma(.)$ (Hörmander condition is sufficient). Then

$$Y_t = \mathbb{E}[g(X_T)|\mathcal{F}_t] = \mathbb{E}[g(X_T)|X_t] =: V(t, X_t)$$

and it follows from Itô’s lemma that

$$Y_t = \mathbb{E}[g(X_T)] + \int_0^t (\sigma^T D V)(s, X_s) \cdot dW_s$$
Backward SDE : Definition

Find an \mathbb{F}^W-adapted (Y, Z) satisfying:

$$Y_t = \xi + \int_t^T F_r(Y_r, Z_r)dr - \int_t^T Z_r \cdot dW_r$$

i.e.

$$dY_t = -F_t(Y_t, Z_t)dt + Z_t \cdot dW_t$$ and $Y_T = \xi$

where the generator $F : \Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}$, and

$$\{F_t(y, z), \ t \in [0, T]\} \text{ is } \mathbb{F}^W \text{ - adapted}$$

If F is Lipschitz in (y, z) uniformly in (ω, t), and $\xi \in L^2(\mathbb{P})$, then there is a unique solution satisfying

$$\sup_{t \leq T} \mathbb{E}|Y_t|^2 + \mathbb{E}\int_0^T |Z_t|^2 dt < \infty$$
Markov BSDE’s

Let X_t be defined by the (forward) SDE

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t$$

and

$$F_t(y, z) = f(t, X_t, y, z), \quad f : [0, T] \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}$$

$$\xi = g(X_T) \in L^2(\mathbb{P}), \quad g : \mathbb{R}^d \rightarrow \mathbb{R}$$

If f continuous, Lipschitz in (x, y, z) uniformly in t, then there is a unique solution to the BSDE

$$dY_t = -f(t, X_t, Y_t, Z_t)dt + Z_t \cdot \sigma(X_t)dW_t, \quad Y_T = g(X_T)$$

Moreover, there exists a measurable function $V :$

$$Y_t = V(t, X_t), \quad 0 \leq t \leq T$$
By definition,
\[Y_s - Y_t = V(s, X_s) - V(t, X_t) = -\int_t^s f(X_r, Y_r, Z_r)dr + \int_t^s Z_r \cdot \sigma(X_r) dW_r \]

If \(V(t, x) \) is smooth, it follows from Itô’s lemma that:
\[\int_t^s \mathcal{L}V(r, X_r)dr + \int_t^s D\mathcal{V}(r, X_r) \cdot \sigma(X_r) dW_r = -\int_t^s f(X_r, Y_r, Z_r)dr + \int_t^s Z_r \cdot \sigma(X_r) dW_r \]

where \(\mathcal{L} \) is the Dynkin operator associated to \(X \):
\[\mathcal{L}V = V_t + b \cdot D\mathcal{V} + \frac{1}{2} \text{Tr}[\sigma \sigma^T D^2 V] \]
Stochastic representation of solutions of a semilinear PDE

Under some conditions, the semilinear PDE

\[-\frac{\partial V}{\partial t} - \mathcal{L}V(t, x) - f(x, V(t, x), DV(t, x)) = 0 \]

\[V(T, x) = g(x)\]

has a unique solution which can be represented as

\[V(t, x) = Y_{t}^{t,x}\]

where \(Y_{t}^{t,x}\) solves the BSDE

\[Y_s = g(X_T) + \int_s^T f(X_r, Y_r, Z_r)dr - \int_s^T Z_r \cdot \sigma(X_r)dW_r, \quad t \leq s \leq T\]

and \(X_t = x, \quad dX_s = b(X_s)ds + \sigma(X_s)dW_s, \quad t \leq s \leq T\)
Extension of Feynman-Kac’s formula

Let \(f \equiv 0 \), then

\[
V(t, x) = Y^t,x_t = g(X^t,x_T) - \int_t^T Z_r \cdot \sigma(X^t,x_r) \, dW_r
\]

\(\Rightarrow \) take conditional expectations \(V(t, x) = \mathbb{E}[g(X^t,x_T)] \) with:

\[
X^t,x_t = x \quad \text{and} \quad dX^t,x_r = b(X^t,x_r) \, dr + \sigma(X^t,x_r) \, dW_r
\]

\(\Rightarrow \) Numerical solution by Monte Carlo:

\[
\hat{V}(t, x) := \frac{1}{N} \sum_{i=1}^N g(\hat{X}^{(i)}_T) \quad \Rightarrow \quad V(t, x) \quad \text{a.s. (LLN)}
\]

and

\[
\sqrt{N} \left(\hat{V}(t, x) - V(t, x) \right) \quad \Rightarrow \quad \mathcal{N}(0, \mathbb{V}[g(X_T)]) \quad \text{(CLT)}
\]
Discrete-time approximation

Numerical solution of a semi-linear PDE by simulating the associated backward SDE by means of Monte Carlo methods
Start from Euler discretization: \(Y_{t_n}^n = g\left(X_{t_n}^n\right) \) is given, and

\[
Y_{t_{i+1}}^n - Y_{t_i}^n = -f\left(X_{t_i}^n, Y_{t_i}^n, Z_{t_i}^n\right) \Delta t_i + Z_{t_i}^n \cdot \sigma\left(X_{t_i}^n\right) \Delta W_{t_{i+1}}
\]
Discrete-time approximation

\[\text{Numerical solution of a semi-linear PDE by simulating the associated backward SDE by means of Monte Carlo methods.} \]

\[\text{Start from Euler discretization: } Y^n_{t_n} = g \left(X^n_{t_n} \right) \text{ is given, and} \]

\[\mathbb{E}_{i}^{n} \left[Y^n_{t_{i+1}} - Y^n_{t_{i}} = -f \left(X^n_{t_{i}}, Y^n_{t_{i}}, Z^n_{t_{i}} \right) \Delta t_{i} + Z^n_{t_{i}} \cdot \sigma \left(X^n_{t_{i}} \right) \Delta W_{t_{i+1}} \right] \]

\[\implies \text{Discrete-time approximation: } Y^n_{t_i} = g \left(X^n_{t_n} \right) \text{ and} \]

\[Y^n_{t_i} = \mathbb{E}_{i}^{n} \left[Y^n_{t_{i+1}} \right] + f \left(X^n_{t_{i}}, Y^n_{t_{i}}, Z^n_{t_{i}} \right) \Delta t_{i} , \quad 0 \leq i \leq n - 1 , \]
Discrete-time approximation

Numerical solution of a semi-linear PDE by simulating the associated backward SDE by means of Monte Carlo methods

Start from Euler discretization: \(Y_{tn} = g(X_{tn}) \) is given, and

\[
\mathbb{E}_i^n [\Delta W_{ti+1}] \rightarrow Y_{ti+1}^n - Y_{ti}^n = -f(X_{ti}^n, Y_{ti}^n, Z_{ti}^n) \Delta t_i + Z_{ti}^n \cdot \sigma (X_{ti}^n) \Delta W_{ti+1}
\]

\(\Rightarrow \) Discrete-time approximation: \(Y_{tn} = g(X_{tn}) \) and

\[
Y_{ti}^n = \mathbb{E}_i^n \left[Y_{ti+1}^n \right] + f(X_{ti}^n, Y_{ti}^n, Z_{ti}^n) \Delta t_i , \ 0 \leq i \leq n - 1
\]

\[
Z_{ti}^n = (\Delta t_i)^{-1} \mathbb{E}_i^n \left[Y_{ti+1}^n \Delta W_{ti+1} \right]
\]
Discrete-time approximation

Numerical solution of a semi-linear PDE by simulating the associated backward SDE by means of Monte Carlo methods.

Start from Euler discretization:

\[
\mathbb{E}_i^n [\Delta W_{t_{i+1}}] \rightarrow Y_{t_{i+1}}^n - Y_{t_i}^n = -f (X_{t_i}^n, Y_{t_i}^n, Z_{t_i}^n) \Delta t_i + Z_{t_i}^n \cdot \sigma (X_{t_i}^n) \Delta W_{t_{i+1}}
\]

\[\Rightarrow\] Discrete-time approximation:

\[
Y_{t_i}^n = g (X_{t_n}^n) \quad \text{and}
\]

\[
Y_{t_i}^n = \mathbb{E}_i^n \left[Y_{t_{i+1}}^n \right] + f (X_{t_i}^n, Y_{t_i}^n, Z_{t_i}^n) \Delta t_i, \quad 0 \leq i \leq n - 1
\]

\[
Z_{t_i}^n = (\Delta t_i)^{-1} \mathbb{E}_i^n \left[Y_{t_{i+1}}^n \Delta W_{t_{i+1}} \right]
\]

\[\Rightarrow\] Similar to numerical computation of American options.
Discrete-time approximation, continued

Theorem Assume f and g are Lipschitz. Then:

\[
\limsup_{n \to 0} n \left\{ \sup_{0 \leq t \leq 1} E \left| Y^n_t - Y_t \right|^2 + E \left[\int_0^1 |Z^n_t - Z_t|^2 \, dt \right] \right\} < \infty
\]

- Same rate of convergence as for the simulation of (forward) SDEs
- in the present context all conditional expectations are regressions, i.e.

\[
\begin{align*}
\mathbb{E} \left[Y^n_{t_{i+1}} \mid \mathcal{F}_{t_i} \right] &= \mathbb{E} \left[Y^n_{t_{i+1}} \mid X_{t_i} \right] \\
\mathbb{E} \left[Y^n_{t_{i+1}} \Delta W_{t_{i+1}} \mid \mathcal{F}_{t_i} \right] &= \mathbb{E} \left[Y^n_{t_{i+1}} \Delta W_{t_{i+1}} \mid X_{t_i} \right]
\end{align*}
\]

\[\implies\text{can be approximated as in the case of American options...}\]
Simulation of Backward SDE’s

1. Simulate trajectories of the forward process \(X \) (well understood)

2. Backward algorithm:

\[
\begin{align*}
\hat{Y}_{tn} & = g \left(X_{tn} \right) \\
\hat{Y}_{ti-1} & = \mathbb{E}_{ti-1} \left[\hat{Y}_{ti} \right] + f \left(X_{ti-1}, \hat{Y}_{ti-1}, \hat{Z}_{ti-1} \right) \Delta t_i, \quad 1 \leq i \leq n, \\
\hat{Z}_{ti-1} & = \frac{1}{\Delta t_i} \mathbb{E}_{ti-1} \left[\hat{Y}_{ti} \Delta W_{ti} \right]
\end{align*}
\]

(truncation of \(\hat{Y}^n \) and \(\hat{Z}^n \) needed in order to control the \(L^p \) error)
Simulation of BSDEs: bound on the rate of convergence

Theorem For $p > 1$:

$$\limsup_{n \to \infty} \max_{0 \leq i \leq n} n^{-1 - d/(4p)} N^{1/2p} \left\| \hat{Y}_{t_i}^n - Y_{t_i}^n \right\|_{L^p} < \infty$$

For the time step $\frac{1}{n}$, and limit case $p = 1$:

rate of convergence of $\frac{1}{\sqrt{n}}$

if and only if

$$n^{-1 - \frac{d}{4} N^{1/2}} = n^{1/2}, \quad \text{i.e.} \ N = n^{3 + \frac{d}{2}}$$
Outline

1. Monte Carlo Methods for American Options
2. Backward SDEs and semilinear PDEs
3. Second order BSDEs
4. Numerical Examples
Main purpose

• Enlarge the class of BSDE’s in order to obtain a stochastic representation of Fully Nonlinear PDE’s (In particular, representation of general stochastic control problems)

• Gradient is related to the representation of a random variable as a stochastic integral (up to the driver)

• In order to obtain a fully nonlinear PDE, one needs to include “the Hessian” in the driver...

⇒ Requires understanding local behavior of double stochastic integrals...
Second order BSDEs : Definition

\[\hat{f}(x, y, z, \gamma) := f(x, y, z, \gamma) + \frac{1}{2} \text{Tr}[\sigma \sigma^T(x)\gamma] \] non-decreasing in \(\gamma \)

Consider the 2nd order BSDE:

\[
\begin{align*}
 dX_t &= \sigma(X_t) dW_t \\
 dY_t &= -f(t, X_t, Y_t, Z_t, \Gamma_t)dt + Z_t \cdot \sigma(X_t) dW_t, \quad Y_T = g(X_T) \\
 dZ_t &= \alpha_t dt + \Gamma_t \sigma(X_t) dW_t
\end{align*}
\]

A solution of (2BSDE) is

a process \((Y, Z, \alpha, \Gamma)\) with values in \(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \times S^n \)

Question: existence? uniqueness? in which class?

<Cheridito, Soner, Touzi and Victoir CPAM 2007>
Second order BSDE: Existence and uniqueness

Feynman-Kac formula for fully-nonlinear PDE

Theorem Let Assumption \((f)\) hold, and suppose \(g\) has linear growth. Suppose further that \((E)\) satisfies the comparison Assumption \(Com\) and has a smooth solution \(v : [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R}\) satisfying

\[
\max \{ |Dv(t, x)|, |D^2v(t, x)|, |\mathcal{L}Dv(t, x)| \} \leq m(1 + |x|^p)
\]
\[
|D^2v(t, x) - D^2v(s, y)| \leq m(1 + |x|^p + |y|^p)(|t - s| + |x - y|)
\]

Then the process \((\tilde{Y}, \tilde{Z}, \tilde{\alpha}, \tilde{\Gamma})\) defined by

\[
\tilde{Y}_t := v(t, X_t), \quad \tilde{Z}_t := Dv(t, X_t), \quad \tilde{\alpha}_t := \mathcal{L}Dv(t, X_t), \quad \tilde{\Gamma}_t := V_{xx}(t, X_t)
\]

is the unique solution of (2BSDE) with \(Z \in \mathcal{A}_{0,x}\)
A probabilistic numerical scheme for fully nonlinear PDEs

By analogy with BSDE, we introduce the following discretization for 2BSDEs:

\[
Y^n_{t_n} = g\left(X^n_{t_n}\right),
\]
\[
Y^\pi_{t_{i-1}} = \mathbb{E}^\pi_{i-1} \left[Y^\pi_{t_i} \right] + f\left(X^\pi_{t_{i-1}}, Y^\pi_{t_{i-1}}, Z^\pi_{t_{i-1}}, \Gamma^\pi_{t_{i-1}}\right) \Delta t_i, \quad 1 \leq i \leq n,
\]
\[
Z^\pi_{t_{i-1}} = \frac{1}{\Delta t_i} \mathbb{E}^\pi_{i-1} \left[Y^\pi_{t_i} \Delta W_{t_i} \right]
\]
\[
\Gamma^\pi_{t_{i-1}} = \frac{1}{(\Delta t_i)^2} \mathbb{E}^\pi_{i-1} \left[Y^\pi_{t_i} \left((\Delta W_{t_i})^2 - \Delta t_i \right) \right]
\]
Intuition From Greeks Calculation

- First, use the approximation $f''(x) \sim_{h=0} \mathbb{E}[f''(x + W_h)]$
- Then, integration by parts shows that

$$f''(x) \sim \int f''(x + y) \frac{e^{-y^2/(2h)}}{\sqrt{2\pi}} dy$$

$$= \int f'(x + y) \frac{y e^{-y^2/2}}{h \sqrt{2\pi}} dy = \mathbb{E} \left[f'(x + W_h) \frac{W_h}{h} \right]$$

$$= \int f(x + y) \frac{y^2 - h e^{-y^2/2}}{h^2} \frac{1}{\sqrt{2\pi}} dy = \mathbb{E} \left[f(x + W_h) \left(\frac{W_h^2 - h}{h^2} \right) \right]$$

- Connection with Finite Differences: $W_h \sim \sqrt{h} \left(\frac{1}{2} \delta_1 + \frac{1}{2} \delta_{-1} \right)$

$$\mathbb{E} \left[\psi(x + W_h) \frac{W_h}{h} \right] \sim \frac{\psi(x + \sqrt{h}) - \psi(x - \sqrt{h})}{2h} \text{ Centered FD !}$$
The Convergence Result

<Fahim, Soner and Touzi 2007>

Theorem Suppose that f is Lipschitz and $\|f_\gamma\|_{L^\infty} \leq \sigma$. Then

$$Y_0^n \rightarrow v(t, x)$$

where v is the unique viscosity solution of the nonlinear PDE.

- Bounds on the approximation error are available
- This convergence result is weaker than that of (first order) Backward SDEs...
in BSDEs the drift coefficient μ of the forward SDE can be changed arbitrarily by Girsanov theorem (importance sampling...)

in 2BSDEs both μ and σ can be changed (numerical results however recommend prudence...)

The heat equation $v_t + v_{xx} = 0$ correspond to a BSDE with zero driver. Splitting the Laplacian in two pieces, it can also be viewed as a 2BSDE with driver $f(\gamma) = \frac{1}{2}\gamma$

\longrightarrow numerical experiments show that the 2BSDE algorithm performs better than the pure finite differences scheme
With $U(x) = -e^{-\eta x}$, want to solve:

$$V(t, x) := \sup_{\theta} \mathbb{E} \left[U \left(x + \int_t^T \theta u \sigma (\lambda du + dW_u) \right) \right]$$

- An explicit solution is available
- V is the characterized by the fully nonlinear PDE

$$-V_t + \frac{1}{2} \lambda^2 \frac{(V_x)^2}{V_{xx}} = 0 \quad \text{and} \quad V(T, .) = U$$
Fig.: Relative Error (Regression), dimension 1
Fig.: Relative Error (Regression), dimension 2
Varying the drift of the FSDE

<table>
<thead>
<tr>
<th>Drift FSDE</th>
<th>Relative error (Regression)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0.0648429</td>
</tr>
<tr>
<td>-0.8</td>
<td>0.0676044</td>
</tr>
<tr>
<td>-0.6</td>
<td>0.0346846</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.0243774</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.0172359</td>
</tr>
<tr>
<td>0</td>
<td>0.0124126</td>
</tr>
<tr>
<td>0.2</td>
<td>0.00880041</td>
</tr>
<tr>
<td>0.4</td>
<td>0.00656142</td>
</tr>
<tr>
<td>0.6</td>
<td>0.00568952</td>
</tr>
<tr>
<td>0.8</td>
<td>0.00637239</td>
</tr>
</tbody>
</table>
Varying the volatility of the FSDE

<table>
<thead>
<tr>
<th>Volatility FSDE</th>
<th>Relative error (Regression)</th>
<th>Relative error (Quantization)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.581541</td>
<td>0.526552</td>
</tr>
<tr>
<td>0.4</td>
<td>0.42106</td>
<td>0.134675</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0165435</td>
<td>0.0258884</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0170161</td>
<td>0.00637319</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0124126</td>
<td>0.0109905</td>
</tr>
<tr>
<td>1.2</td>
<td>0.0211604</td>
<td>0.0209174</td>
</tr>
<tr>
<td>1.4</td>
<td>0.0360543</td>
<td>0.0362259</td>
</tr>
<tr>
<td>1.6</td>
<td>0.0656076</td>
<td>0.0624566</td>
</tr>
<tr>
<td>1.8</td>
<td>0.328734</td>
<td>0.317035</td>
</tr>
<tr>
<td>2</td>
<td>1.17857</td>
<td>1.14349</td>
</tr>
</tbody>
</table>