Turbulent Rotating Rayleigh-Bénard Convection: DNS and SPIV Measurements

Rudie Kunnen¹ | Herman Clercx¹,² | Bernard Geurts¹,²

¹ Fluid Dynamics Laboratory, Department of Physics
Eindhoven University of Technology

² Department of Applied Mathematics, Faculty EEMCS
University of Twente

First IMS Turbulence Workshop
Interscale energy transfers in various turbulent flows
March 26-28, 2007, Imperial College London, UK
Convection and Rotation

In geophysical/astrophysical flow settings

www.NOAA.org

www.PSC.edu
Influence of background rotation

Taylor–Proudman theorem \leftrightarrow no vertical variation of velocity under geostrophic conditions

“Taylor column” above object dragged through a rotating fluid
Spin-up of plumes

Converging flow near walls \rightarrow plumes with cyclonic vorticity
Outline

- Direct Numerical Simulations

 Simplified geometry, basic effects of rotation on RB convection

- Laboratory Experiments
DNS: computational domain

periodic

\[\Omega \]

no-slip; \(T = 0 \)

no-slip; \(T = 1 \)

128 gridpts

64/128 gridpts

128 gridpts

2

1

Kunnen, Clercx & Geurts — Turbulent Rotating Convection: Simulation and Experiment
DNS: equations

Navier-Stokes and heat equations in Boussinesq approximation with incompressibility:

\[
\frac{Du}{Dt} + \sqrt{\frac{\sigma Ta}{Ra}} \mathbf{z} \times \mathbf{u} = -\nabla p + T\mathbf{z} + \sqrt{\frac{\sigma}{Ra}} \nabla^2 \mathbf{u},
\]

\[
\frac{DT}{Dt} = \frac{1}{\sqrt{\sigma Ra}} \nabla^2 T,
\]

\[
\nabla \cdot \mathbf{u} = 0,
\]

Rayleigh: \(Ra = \frac{g\alpha \Delta T H^3}{\nu \kappa} \)
Taylor: \(Ta = \left(\frac{2\Omega H^2}{\nu} \right)^2 \)
Prandtl: \(\sigma = \frac{\nu}{\kappa} \).

Buoyancy/Coriolis ratio \(\rightarrow \) Rossby number: \(Ro = \sqrt{\frac{Ra}{\sigma Ta}} \).
Simulation values

Two series:

- \(\sigma = 1, \ Ra = 2.5 \times 10^6 \)
 - \(Ta = 0 \ldots 10^8 \)
 - \(Ro = \infty \ldots 0.16 \)

- \(\sigma = 1, \ Ra = 2.5 \times 10^7 \)
 - \(Ta = 1.6 \times 10^6 \ldots 2.3 \times 10^8 \)
 - \(Ro = 4.0 \ldots 0.33 \)
Temperature isosurfaces

$Ra = 2.5 \times 10^6$

$Ro = 1.33$

$Ro = 0.5$

Strong rotation (lower Ro) gives columnar flow structuring
Vertical-velocity skewness

\[S_w = \frac{\langle w^3 \rangle}{\langle w^2 \rangle^{3/2}} \]

Indicates area fraction of horizontal cross-sections containing upward/downward motion.

\(S_w > 0 \): Fraction of cross-section containing upward motion smaller than fraction containing downward motion.

Quantification of localization.
Vertical-velocity skewness for $Ra = 2.5 \times 10^6$

`Switch' of S_w points to change in flow structuring near wall; extremum around $Ro = 0.75$
Cross-sections on top of lower viscous BL

w ω_z T

$Ro = \infty$

- Vertical motion in sheet-like structures
- No clear relation with vorticity field
Cross-sections on top of lower viscous BL

$Ro = 0.5$

- Vertical transport inside vortical columns fed by Ekman pumping
- Definite correlation of w, ω_z and T
Horizontal and vertical rms velocities

Rotation lowers both horizontal and vertical rms velocities
Average and rms temperatures

Mean temperature gradient over bulk; rms temperature increases, then collapses
Boundary layer thicknesses \((Ra = 2.5 \times 10^6)\)

\[\lambda_v = \text{viscous BL} \]

\[\lambda_\theta = \text{thermal BL} \]

BL thickness

= position at which rms value is maximal

\[\sim Ta^{-1/4} \]
Heat transfer

Nusselt number calculated as:

\[\text{Nu} = \frac{\partial \langle T \rangle}{\partial z} \bigg|_{\text{wall}} \]

\[\text{O, X } Ra = 2.5 \times 10^6 \]
\[\text{◊, + } Ra = 2.5 \times 10^7 \]

Rossby \textit{J. Fluid Mech.} \textbf{36} (1969)
Hunter & Riahi \textit{J. Fluid Mech.} \textbf{72} (1975)

\[\text{Nu} \]

\[Ta = 0 \]

\[x + = \text{top wall} \]
\[o ◊ = \text{bottom wall} \]

Rossby (\(\sigma = 6.8 \))
experiment

Hunter & Riahi (\(\sigma = \infty \))
upper bound \(\sim Ta^{-2} \)
Conclusions — DNS

- Rotation causes columnar flow-structuring

- Under strong rotation vortical plumes cover nearly all vertical transport

- Enhanced heat transfer at moderate rotation rates → Ekman pumping

- Strong geostrophic damping of vertical motion at higher rotation rates

Outline

- Direct Numerical Simulations
- Laboratory experiments

Large Scale Recirculation and background rotation; emergence of vortical regime; modification of structure functions by background rotation.
Experimental setup

Cylindrical convection cell of diameter and height 23 cm placed on rotating table

Measurement technique
→ Stereo-PIV
Parameter range

Prandtl — Working fluid is water: \(\sigma \approx 7 \)

Rayleigh — Temperature difference \(\Delta T \) up to 5 K: \(Ra = 0 \ldots 10^9 \)

Taylor — Centrifugal effects are small
 Example: if \(\Omega^2 r / g < 0.1 \rightarrow Ta = 0 \ldots 10^{11} \)

Rossby — At \(Ra = 10^9 \): \(Ro = \infty \ldots 0.039 \)
Stereo-PIV

- 2 cameras at different viewing angles
- Laser sheet
- Seeded water

2 views at different angles
3rd velocity component through geometric reconstruction

3 components of velocity in 2D cross-section of domain
Stereo-PIV
Stereo-PIV

Re_\lambda \sim 200 \ , \ H=5 \ cm

\Omega=0: \ stationary, \ reproducible, \ and \ (u')^2 \sim (v')^2 \sim (w')^2.

Characterization of rotating turbulence at several heights in the rotating fluid; \ \Omega=1, \ 5, \ 10 \ rad/s.
Measurements

At $Ra = 1.1 \times 10^9$, $\sigma = 6.4$

(1) Effect of rotation on well-known large-scale circulation cell of nonrotating case

$Ta = 0$, $Ro = \infty$

$Ta = 1.3 \times 10^6 \ldots 8.4 \times 10^7$, $Ro = 11.5 \ldots 1.4$

(2) Flow behaviour at larger rotation rates \rightarrow towards vortical regime

$Ta = 3.4 \times 10^8 \ldots 2.2 \times 10^{10}$, $Ro = 0.72 \ldots 0.090$
No rotation ($Ro = \infty$)

Large-scale circulation (LSC) across cylinder domain, azimuthal oscillation
Oscillation of LSC \((Ro = \infty)\)

“Centroid for \(w > 0\)” (O) and “centroid for \(w < 0\)” (X)

From autocorrelation \(R\):
oscillation period \(\tau_0 = 140\) s

(In agreement with Xi et al., PRE 73, 056312 (2006).)
Ro=5.8
Large-scale circulation cell remains intact

Ro=2.9
Break-up of LSC, some vorticity is apparent

Ro=0.09
Vertical transport mostly inside tiny vortices
Vorticity animation (\(Ro = 0.090\))

\[\omega_z \text{ (1/s)} \]

Vortices of both signs are present; quasi-2D vortex interactions
Bolgiano-Obukhov (BO) scaling

Structure function: \(S_w^p(r) = \langle |w(x + r) - w(x)|^p \rangle \)

In buoyancy-dominated convection scaling determined by \((g\alpha), N, r\).

\[N = \kappa \langle |\nabla T|^2 \rangle \iff \epsilon = \nu \langle |\nabla u|^2 \rangle \]

Dimensional analysis gives:

\[S_w^p(r) \sim (g\alpha)^{2p/5} N^{p/5} r^{3p/5} \]

BO scaling valid for \(r > L_B = \frac{\epsilon^{5/4}}{(g\alpha)^{3/2} N^{3/4}} \)

Estimate from other work: \(L_B = 6.2 \text{ mm} \)
Spatial SFs at $\Omega = 0$ ($Ro = \infty$)

Second-order SF of vertical velocity

Open symbols: calculated in y direction

Closed symbols: calculated in x direction
Temporal SFs and Bolgiano length/time

From experiments: time series $w(t)$

Temporal SF: $S_{w}^{p}(\tau) = \langle |w(t + \tau) - w(t)|^{p} \rangle$

Taylor's hypothesis: r can be replaced by $U\tau$ for turbulence with an effective `sweeping' velocity U

Temporal SF scaling: $S_{w}^{p}(\tau) \sim \tau^{3p/5}$

From model of LSC [Villermaux *Phys. Rev. Lett.* 75 (1995)]: $U = 2H/\tau_{0}$

Estimated “Bolgiano time” $\tau_{B} = L_{B}/U = 1.9$ s
Temporal SFs at $\Omega = 0 \ (Ro = \infty)$

Indication of BO scaling in temporal SFs
Temporal SFs at different Ω

Scaling range ends at time scale dependent on Ω
Steepening at moderate Ω (compared to BO)

Kunnen, Clercx & Geurts — Turbulent Rotating Convection: Simulation and Experiment
Summary — Experiment

- Stereo-PIV measurements in cylindrical convection cell
- Effects of rotation on LSC studied
- At higher rotation rates the vortical state is found
- Structure functions give indications of BO scaling without rotation; rotation modifies scaling

R.P.J. Kunnen, H.J.H. Clercx, B.J. Geurts, L.J.A. van Bokhoven, and R.A.D. Akkermans, to be submitted to PRE.
Outlook

Investigation of vortical plumes and relation with heat transfer

DNS on a cylindrical domain → comparison with experiment

Experiments using Laser Induced Fluorescence → local temperature measurement in 2D cross-sections